

GEFÜGEANALYSE VON METALLISCHEN LEGIERUNGEN MIT QUANTITATIVEN COMPUTERTOMOGRAFIEMETHODEN

M. Firsching, R. Hanke, P. Keßling, M. Krumm, F. Nachtrab, M. Salamon, N. Uhlmann Entwicklungszentrum Röntgentechnik, Fraunhofer IIS

DGZfP-Jahrestagung, 10.-12. Mai 2010, Erfurt, Kontakt: markus.firsching@iis.fraunhofer.de

© Fraunhofer IIS

ÜBERBLICK

- 1. Einführung zur Gefügeanalyse
- 2. Gefügeanalyse mittels 3D-Computertomographie (CT)
- 3. Vergleich mit konventionellen Methoden
- 4. Beispiel: Al Si6 Cu4
- 5. Quantitative CT: Zwei Spektren CT (2X-CT)
- 6. Möglichkeiten und Grenzen
- 7. Zusammenfassung

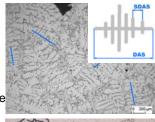
© Fraunhofer II

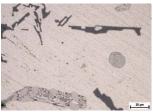
Motivation

Überblick

- Analyse von metallischen Gefüge ermöglicht Rückschlüsse auf:
 - Festigkeit
 - Ermüdungsverhalten
 - Fertigungsprozess (Analyse antiker Werkstoffe)
 - Zusammensetzung des Werkstoffs
- Besonders für hoch belastbare Werkstoffe ist die genaue Kenntnis der Gefügeausprägung von enormen Interesse.
 - z.B. Verbrennungsmotoren → Legierung AlSi6Cu4

© Fraunhofer III

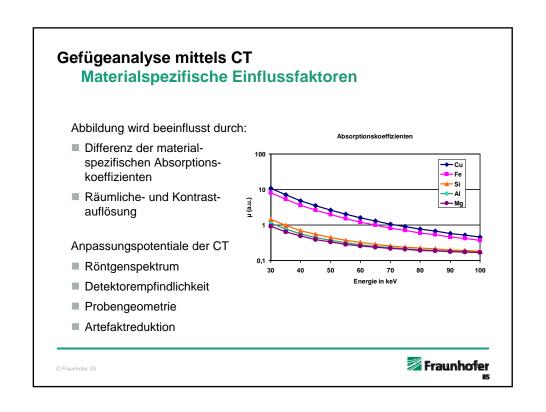


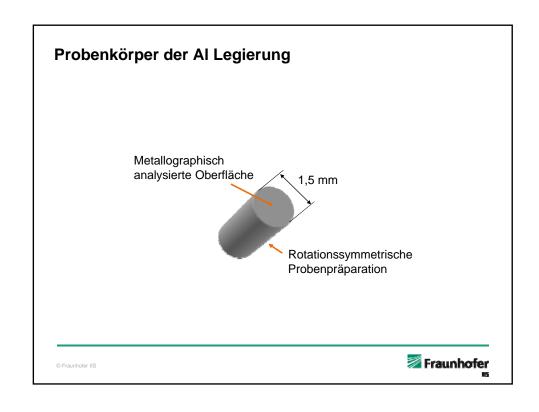

Gefügeanalyse

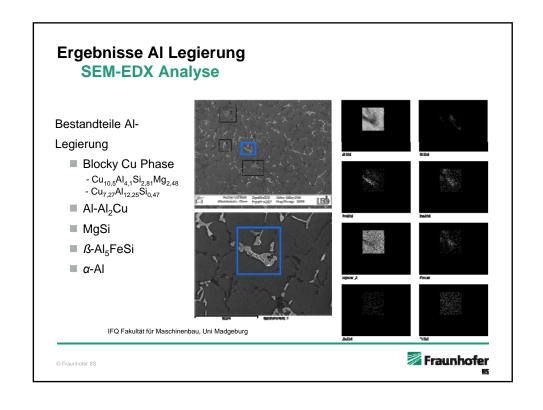
Charakteristische Merkmale

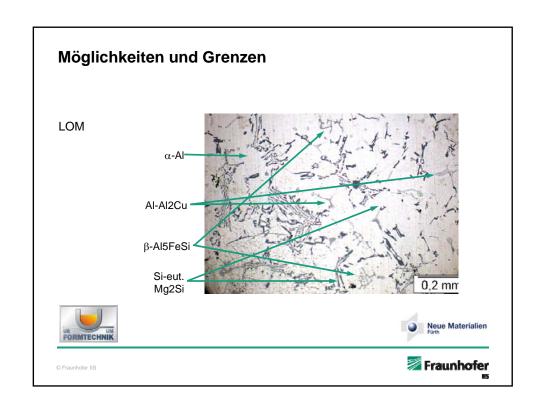
- Merkmale:
 - Dendriten Arm Abstand (DAS)
 - Sekundäre Dendriten Arm Abstand (SDAS)
 - Porosität
 - Vorkommen und Ausprägung unterschiedliche
- Methoden:
 - 2D-Bildgebung (LOM / EDX)
 - Bisher: 3D-Bildgebung nur durch Kombination

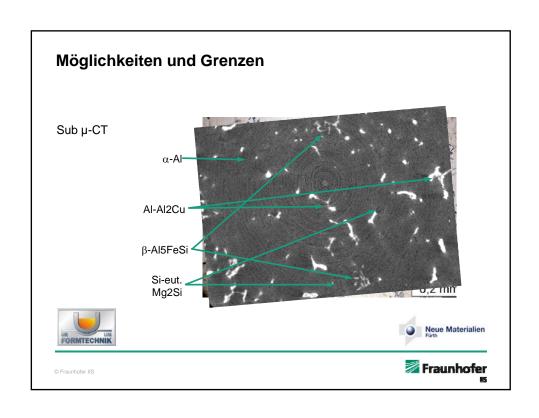
Bilder: IFQ Fakultät für Maschinenbau, Uni Madgeburg

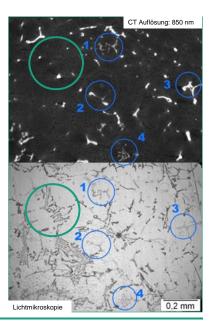





© Fraunhofer IIS


Fraunhofer

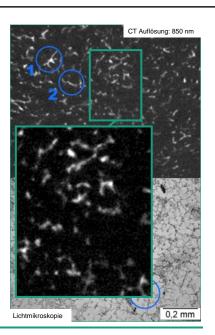

Messprinzip 3D Computertomographie Absorption von Röntgenstrahlung Lambert Beer'sches Gesetz $I(d) = I_0 \cdot e^{-\mu d}$ Intensität im Schattenwurf abhängig von: ■ Durchstrahlungslänge $\rightarrow d$ ■ Materialeigenschaft $\rightarrow \mu(\rho, Z)$ Aufnahme aus 360° Raumwinkeln ■ Rekonstruktion eines 3D Volumens ■ Kombination: Kegelstrahl und Flachbilddetektor \rightarrow 3D-OT Detektor (θ, I) \rightarrow Zeitersparnis, Artefakte



Ergebnisse Al Legierung 2D Vergleich LOM mit CT

Oberflächenferne Probe

- Zuordnung der eisen- und kupferhaltigen Strukturen möglich
- Ohne zusätzliche Kontrastierung ist die qualitative Zuordnung der einzelnen Phasen im LOM schwierig
- Al Matrix und Si Eutektikum auf Grund ihrer geringfügige Absorptionsunterschiede in der Röntgen-CT nur schwer zu trennen


Fraunhofer

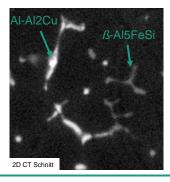
© Fraunhofer III

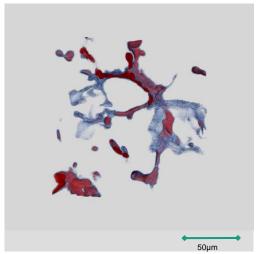
Ergebnisse Al Legierung 2D Vergleich LOM mit CT

Probe 2 (oberflächennah)

- Zuordnung der eisen- und kupferhaltigen Strukturen möglich
- Ohne zusätzliche Kontrastierung ist die qualitative Zuordnung der einzelnen Phasen im LOM schwierig
- Fein ausgeprägte Strukturen zeigen die Begrenzung der Strukturerkennbarkeit durch räumliche Auflösung

Fraunhofer


Fraunhofer IIS


Ergebnisse Al Legierung

3D Abbildung von Materialphasen mit CT

Probe 1

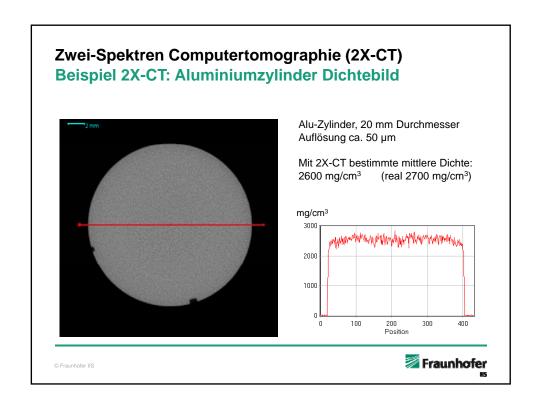
Analyse der Gefügeorientierung

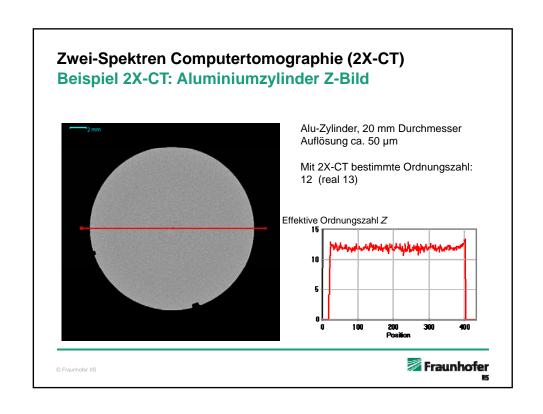
IIS

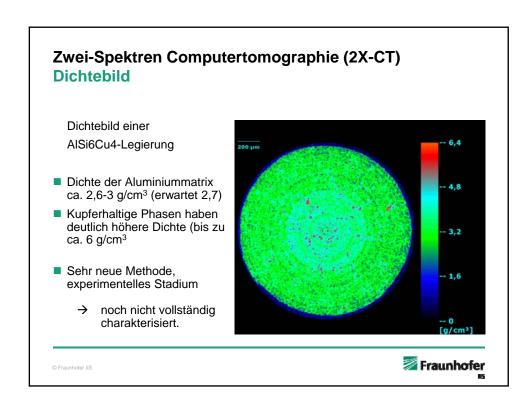
Fraunhofer

Zwei-Spektren Computertomographie (2X-CT)

Theorie zur 2X-CT


- Röntgenabschwächung von zwei Effekten abhängig:
 - Comptonstreuung
 - Photoeffekt
 - Beide sind Material- und Energieabhängig
- CT bestimmt den Schwächungskoeffizienten μ, dieser ist abhängig von Massendichte ρ und (effektiver) Ordnungszahl Z
- Messung mit zwei verschiede-nen Röntgenspektren (Energien 1 und 2) erlaubt Rückschlüsse auf das Material, z.B. Massen-dichte ρ und Ordnungszahl Z
- → Sog. "Rho-Z-Projektion"


$$\begin{pmatrix} \mu_1(\rho, Z) \\ \mu_2(\rho, Z) \end{pmatrix} \rightarrow \begin{pmatrix} \rho(\mu_1, \mu_2) \\ Z(\mu_1, \mu_2) \end{pmatrix}$$


Heismann et al., Jour. Appl. Phys., Vol 94, No. 3, 2003, pp 2073-2079

Fraunhofer

© Fraunhofer IIS

Zusammenfassung

Gefügeanalyse mittels 3D-Computertomographie:

- ist eine Ergänzung zur 2D Schliffbildmethode
- liefert bei Al-Legierungen besonders guten Kontrast bei den eisen- und kupferhaltigen Phasen
- erlaubt Erstellung von 3D-Datensätzen mit isotroper Auflösung in einem Schritt. Für 3D-CT kein Ätzen, kein Anfertigen von Schliffbildern nötig!

Zwei Spektren Computertomographie (2X-CT)

- quantitative Materialinformation (Massendichte, in Zukunft auch Ordnungszahl)
- Ergänzung zu EDX-Methoden

© Fraunhofer II

Fraunhofer

Kontakt: mar	kus.firsching@iis.fraunhofer.	de
© Fraunhofer IIS		Fraunhofer